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3 Sobolev Spaces

Exercise 3.1. Let {un}n∈N ⊂ W 1,∞(I) be a Cauchy sequence. Then {un}n∈N and {u′
n}n∈N

are Cauchy sequences in L∞(I), thus un → u and u′
n → g in L∞(I). Moreover, since

un ∈ W 1,∞(I), we have

un(x) = un(y) +
∫ x

y

u′
n(t) dt, ∀n ∈ N.

By letting n → ∞ we obtain that the limits u and g satisfy

u(x) = u(y) +
∫ x

y

g(t) dt

and from Exercise 3.1 of Sheet 8, we also get that g = u′ in D′(I). This shows that
u ∈ W 1,∞(I) as desired.

Exercise 3.2. Since u ∈ W 1,p(I) we have u(x) = u(0) +
∫ x

0
u′(t) dt. Note that

1
x

∫ x

0
|u′(t)| dt ≤ 1

x
x1− 1

p ∥u′∥Lp(I) =
∥u′∥Lp(I)

x
1
p

∈ L1(I),

thus u(x)
x

∈ L1(I) if and only if u(0)
x

∈ L1(I) and this holds true if and only if u(0) = 0.

Moreover let v(x) = (1 + | log(x)|)−1 = (1 − log(x))−1. We have v′(x) = x−1(1 −
log(x))−2, from which we get∫ 1

0
v(x) dx =

∫ 0

−∞

ey

1 − y
dy < ∞∫ 1

0
v′(x) dx =

∫ 0

−∞

1
(1 − y)2 dy < ∞.

Moreover v(0) = 0 but ∫ 1

0

v(x)
x

dx =
∫ 0

−∞

1
1 − y

dy = ∞.

Exercise 3.3. We define

un(x) =


0, if 0 < x ≤ 1

2
n(x − 1

2), if 1
2 < x ≤ 1

2 + 1
n

1, if 1
2 + 1

n
< x < 1.
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Obviously un ∈ L1(I) for every n ∈ N, and moreover its distributional derivative u′
n

is given by

u′
n(x) =


0, if 0 < x ≤ 1

2
n, if 1

2 < x ≤ 1
2 + 1

n

0, if 1
2 + 1

n
< x < 1.

Thus, also u′
n ∈ L1(I). Moreover

∥un∥W 1,1(I) = ∥un∥L1(I) + ∥u′
n∥L1(I) ≤ 1

2 + 1 = 3
2 ,

but un(x) → H(x − 1
2) almost everywhere, and since {un}n∈N ⊂ C0(I), {un}n∈N can not

converge in L∞(I), because its limit would be a continuous function and H(x − 1
2) is

clearly not.

Exercise 3.4. Suppose that u ∈ Lip(I). By Rademacher’s Theorem u is differentiable
almost everywhere and its distributional derivative coincides with the almost everywhere
one. But since u ∈ Lip(I), the almost everywhere derivative is bounded, indeed for almost
every x ∈ I

|u′(x)| ≤ lim
h→0

|u(x + h) − u(x)|
|h|

≤ lim
h→0

L|h|
|h|

= L.

Thus, also the distributional derivative u′ ∈ L∞(I) and this shows that Lip(I) ⊂ W 1,∞(I).

Let now u ∈ W 1,∞(I). We have

|u(x) − u(y)| ≤
∣∣∣∣∫ x

y

u′(t) dt

∣∣∣∣ ≤ ∥u′∥L∞(I)|x − y|,

which implies that u ∈ Lip(I).

Exercise 3.5. Let φ ∈ C∞
0 (R) and un(x) = φ(x + n). Clearly {un}n∈N ⊂ W 1,p(R) is

bounded, indeed
∥un∥W1,p(R) = ∥φ∥W1,p(R)

Moreover, since φ vanishes at infinity, un(x) → 0 for every x ∈ R, but ∥un∥Lq(R) =
∥φ∥Lq(R) ̸= 0. Thus there cannot be a subsequence converging strongly in Lq(R).

Let now p′ = p

p − 1. Since C∞
c (R) is dense in Lp′(R), for every v ∈ Lp′(R) and for

every ε > 0 there exists vε ∈ C∞
c (R) such that

∥vε − v∥Lp′ (R) <
ε

2 ∥φ∥Lp(R)
(1)

2



EPFL - Fall 2022
Distribution and Interpolation Spaces
Exercise sheet 9

Dr. Alexis Michelat
Exercises

16 November 2022

Moreover, for every ε > 0, |un(x)vε(x)| ≤ ∥φ∥L∞(R)|vε(x)| ∈ L1(R), and since φ
vanishes at infinity, we also get un(x)vε(x) → 0 for every x ∈ R, as n → ∞. Thus, by
Lebesgue dominated convergence, for every ε > 0, there exists Nε such that ∀n ≥ Nε∣∣∣∣∫

R
un(x)vε(x) dx

∣∣∣∣ <
ε

2 . (2)

Finally, by using (1) and (2), we can conclude∣∣∣∣∫
R

un(x)v(x) dx

∣∣∣∣ ≤
∫
R

|un(x)||v(x) − vε(x)| dx +
∣∣∣∣∫

R
un(x)vε(x) dx

∣∣∣∣
≤ ∥un∥Lp(R) ∥v − vε∥Lp(R) + ε

2 < ∥φ∥Lp(R)
ε

2 ∥φ∥Lp(R)
+ ε

2 = ε,

which shows that un ⇀ 0 in Lp(R). From the very same proof we also get u′
n ⇀ 0 in

Lp(R).
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